论文标题
在敏锐的弱还原的桥梁上
On keen weakly reducible bridge spheres
论文作者
论文摘要
据说,如果桥球在相反的两侧承认一对唯一的不相交压缩磁盘,则毫无疑问。特别是,这样的桥梁球是弱还原,不是干扰,并且在戴维·巴赫曼(David Bachman)的意义上并不是最小的。就詹妮弗·舒尔特斯(Jennifer Schultens)的宽度络合物而言,桥梁位置相对于敏锐的弱还原的桥球的链接与局部最小值相距距离。在本文中,我们为$ b $ bridge位置$ b \ geq 4的链接的敏锐弱还原的桥球提供了许多示例。$
A bridge sphere is said to be keen weakly reducible if it admits a unique pair of disjoint compressing disks on opposite sides. In particular, such a bridge sphere is weakly reducible, not perturbed, and not topologically minimal in the sense of David Bachman. In terms of Jennifer Schultens' width complex, a link in bridge position with respect to a keen weakly reducible bridge sphere is distance one away from a local minimum. In this paper, we give infinitely many examples of keen weakly reducible bridge spheres for links in $b$ bridge position for $b \geq 4.$