论文标题

扭曲石墨系统中的通用莫伊尔列阶段

Universal moiré nematic phase in twisted graphitic systems

论文作者

Rubio-Verdú, Carmen, Turkel, Simon, Song, Larry, Klebl, Lennart, Samajdar, Rhine, Scheurer, Mathias S., Venderbos, Jörn W. F., Watanabe, Kenji, Taniguchi, Takashi, Ochoa, Héctor, Xian, Lede, Kennes, Dante, Fernandes, Rafael M., Rubio, Ángel, Pasupathy, Abhay N.

论文摘要

石墨烯Moiré超晶格显示电子平板。在这些扁平频段的整数填充物上,通常观察到由于较强的电子电子相互作用而引起的能隙。然而,在非全能填充物中扭曲的石墨系统中其他相关驱动的相位的存在尚不清楚。在这里,我们报告了扫描隧道显微镜(STM)测量值,这些测量揭示了在扭曲的双重双层石墨烯(TDBG)中存在三倍旋转(C3)对称性的存在。使用光谱成像在大型和均匀区域上表征C3对称性破裂的方向和程度,我们发现仅在对应于平面带的能量下它是突出的,而在远程频段中几乎没有。我们证明了C3对称性破坏无法通过异晶或位移场来解释,而是相互作用驱动的电子列相的表现,该相甚至远离整数填充物。将我们的实验数据与显微镜和现象学建模的结合进行比较,我们表明列不稳定性与石墨烯格子的局部规模无关,而是一种在Moiré晶格的尺度上的新兴现象,这表明这种有序状态在平面MoiréMoiré材料中的普遍特征。

Graphene moiré superlattices display electronic flat bands. At integer fillings of these flat bands, energy gaps due to strong electron-electron interactions are generally observed. However, the presence of other correlation-driven phases in twisted graphitic systems at non-integer fillings is unclear. Here, we report scanning tunneling microscopy (STM) measurements that reveal the existence of threefold rotational (C3) symmetry breaking in twisted double bilayer graphene (tDBG). Using spectroscopic imaging over large and uniform areas to characterize the direction and degree of C3 symmetry breaking, we find it to be prominent only at energies corresponding to the flat bands and nearly absent in the remote bands. We demonstrate that the C3 symmetry breaking cannot be explained by heterostrain or the displacement field, and is instead a manifestation of an interaction-driven electronic nematic phase, which emerges even away from integer fillings. Comparing our experimental data with a combination of microscopic and phenomenological modeling, we show that the nematic instability is not associated with the local scale of the graphene lattice, but is an emergent phenomenon at the scale of the moiré lattice, pointing to the universal character of this ordered state in flat band moiré materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源