论文标题
基于特征的交叉扩散和热跟踪大脑状态分析的大脑多编码的多尺度分析
Multi-Scale Profiling of Brain Multigraphs by Eigen-based Cross-Diffusion and Heat Tracing for Brain State Profiling
论文作者
论文摘要
单个大脑可以看作是高度复杂的多编码(即一组也称为连接组的图),其中每个图代表成对的脑区域(节点)关系(例如功能或形态)的唯一连接视图。由于其多重复杂性,了解脑部疾病如何不仅改变了大脑图的单一视图,而且在个体和人口尺度上的多机表示,它仍然是对脑连接性的最具挑战性的障碍之一,以最终消除大脑范围广泛的大脑状态(例如,健康的与健康的vs.无序)。在这项工作中,在交叉授粉光谱图理论和扩散模型的领域时,我们前所未有地提出了一种基于特征的跨扩散策略,用于多编码脑整合,比较和分析。具体而言,我们首先设计了一个以特征向量中心性为指导的大脑多机融合模型,以依靠交叉扩散过程中的大多数中心节点。接下来,由于图形频谱对其形状(或几何形状)进行编码,好像可以听到图形的形状,因此我们首次通过提取其相应Laplacian矩阵的紧凑型热传播标志来在几个扩散时间标准上介绍融合的多数法。在这里,我们首次揭示了形态脑多编码的自闭症和健康的特征,该图是源自T1-W磁共振成像(MRI),并证明了它们在与最先进的方法相比提高未见样本的分类方面的可区分性。这项研究提出了迈向聆听大脑多编码形状的第一步,该图可以用于分析和解散合并症的神经系统疾病,从而提高精度医学。
The individual brain can be viewed as a highly-complex multigraph (i.e. a set of graphs also called connectomes), where each graph represents a unique connectional view of pairwise brain region (node) relationships such as function or morphology. Due to its multifold complexity, understanding how brain disorders alter not only a single view of the brain graph, but its multigraph representation at the individual and population scales, remains one of the most challenging obstacles to profiling brain connectivity for ultimately disentangling a wide spectrum of brain states (e.g., healthy vs. disordered). In this work, while cross-pollinating the fields of spectral graph theory and diffusion models, we unprecedentedly propose an eigen-based cross-diffusion strategy for multigraph brain integration, comparison, and profiling. Specifically, we first devise a brain multigraph fusion model guided by eigenvector centrality to rely on most central nodes in the cross-diffusion process. Next, since the graph spectrum encodes its shape (or geometry) as if one can hear the shape of the graph, for the first time, we profile the fused multigraphs at several diffusion timescales by extracting the compact heat-trace signatures of their corresponding Laplacian matrices. Here, we reveal for the first time autistic and healthy profiles of morphological brain multigraphs, derived from T1-w magnetic resonance imaging (MRI), and demonstrate their discriminability in boosting the classification of unseen samples in comparison with state-of-the-art methods. This study presents the first step towards hearing the shape of the brain multigraph that can be leveraged for profiling and disentangling comorbid neurological disorders, thereby advancing precision medicine.