论文标题
彼得罗夫型D型的非对决的爱因斯坦 - 马克斯韦尔罗宾逊 - 特劳特人田地
Non-aligned Einstein-Maxwell Robinson-Trautman fields of Petrov type D
论文作者
论文摘要
我们讨论了petrov型Deinstein-Maxwell田间,其中Weyl张量的双重null特征向量均与非肺电气磁场的特征向量不结盟,并被认为是地理,剪切,剪切,脱落,发散和非扭曲的。在额外的条件下,我们获得爱因斯坦 - 马克斯韦尔方程的一般解,即Weyl Canonical Tetrad的复杂无效载体是性的。相应的空间时间都与杀戮Yano空间相关,并由5参数的指标家族来描述,承认两个通勤的杀戮向量,并将C-Metric作为可能的真空限制。
We discuss Petrov type D Einstein-Maxwell fields in which both double null eigenvectors of the Weyl tensor are non-aligned with the eigenvectors of a non-null electromagnetic field and are assumed to be geodesic, shear-free, diverging and non-twisting. We obtain the general solution of the Einstein-Maxwell equations under the extra condition that the complex null vectors of the Weyl canonical tetrad are hypersurface orthogonal. The corresponding space-times are all conformally related to a Killing-Yano space and are described by a 5-parameter family of metrics, admitting two commuting Killing vectors and having the C-metric as a possible vacuum limit.