论文标题

通用域的广义分数匹配

Generalized Score Matching for General Domains

论文作者

Yu, Shiqing, Drton, Mathias, Shojaie, Ali

论文摘要

当数据自然限制为真实空间的适当子集时,就会出现在通用域上支持的密度函数的估计。这个问题通常通过棘手的归一化常量而复杂。得分匹配提供了一种强大的工具,用于估计具有如此棘手的归一化常数的密度,但是最初提出的限于$ \ Mathbb {r}^m $和$ \ Mathbb {r} _+^m $上的密度。在本文中,我们提供了分数匹配的自然概括,可容纳在非常一般的域上支持的密度。我们将框架应用于截短的图形和成对相互作用模型,并为所得估计器提供理论保证。我们还将最近提出的方法从界限到无限域中概括,并从经验上证明了我们方法的优势。

Estimation of density functions supported on general domains arises when the data is naturally restricted to a proper subset of the real space. This problem is complicated by typically intractable normalizing constants. Score matching provides a powerful tool for estimating densities with such intractable normalizing constants, but as originally proposed is limited to densities on $\mathbb{R}^m$ and $\mathbb{R}_+^m$. In this paper, we offer a natural generalization of score matching that accommodates densities supported on a very general class of domains. We apply the framework to truncated graphical and pairwise interaction models, and provide theoretical guarantees for the resulting estimators. We also generalize a recently proposed method from bounded to unbounded domains, and empirically demonstrate the advantages of our method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源