论文标题

几乎不可能扩展

Impossibility of almost extension

论文作者

Naor, Assaf

论文摘要

令$({\ MathBf X},\ | \ cdot \ | _ {\ MathBf X}),({\ MathBf Y},\ | \ cdot \ | _ {\ cdot \ | _ {\ Mathbf y})$ n narmed n narmed formed n narmed formed n narmed sumed be n n narmed formed n narmed space be n n n narm narmed Space as $ {\ Mathrm {\ Mathrm {dim {dim}} = n = Bourgain的几乎扩展定理断言,对于任何$ {\ varepsilon}> 0 $,如果$ {\ Mathcal {n}} $是$ {\ varepsilon} $ - $ {\ MATHBF x} $ f:{ $ 1 $ -LIPSCHITZ,然后存在$ O(1)$ -IPPCHITZ $ F:{\ MATHBF X} \ to {\ MathBf Y} $,这样$ \ | f(a)-f(a)-f(a)\ | _ {\ | _ {\ Mathbf y} \ Mathcal {n} $。我们证明,这是最佳至较低因素的最佳选择,即有时$ \ max_ {a \ in {\ Mathcal {n}}}}}} \ | f(a)-f(a)-f(a)\ | _ {\ m rathbf y} \ gtrsim n^n^$ o(1- o(1- o(1)) $ f:{\ mathbf x} \ to {\ mathbf y} $。这改善了$ \ max_ {a \ in {\ mathcal {n}}}}} \ | f(a)-f(a)-f(a)\ | _ {\ mathbf y} \ gtrsim n^{c} {c} {\ varepsilon} $ 0 <c <c <c <c <c <c <c <c <如果$ {\ mathbf x} = \ ell_2^n $,则几乎扩展定理中的近似值可以改进到$ \ max_ {a \ in {\ nathcal {n}}}}}} \ | f(a)-f(a)-f(a)-f(a)-f(a)-f(a)-f(a)\ | ________ {\ Mathbf y} \ | {\ Mathbf y} \ \ sy {\ Mathbf y} \ sqrt {n} {\ varepsilon} $。我们证明这很尖锐,即有时$ \ max_ {a \ in {\ Mathcal {n}}}}}} \ | f(a)-f(a)-f(a)\ | _ {\ MathBf y} \ gtrsim \ gtrsim \ sqrt \ sqrt {n} { $ f:\ ell_2^n \ to {\ mathbf y} $。

Let $({\mathbf X},\|\cdot\|_{\mathbf X}), ({\mathbf Y},\|\cdot\|_{\mathbf Y})$ be normed spaces with ${\mathrm{dim}}({\mathbf X})=n$. Bourgain's almost extension theorem asserts that for any ${\varepsilon}>0$, if ${\mathcal{N}}$ is an ${\varepsilon}$-net of the unit sphere of ${\mathbf X}$ and $f:{\mathcal{N}}\to {\mathbf Y}$ is $1$-Lipschitz, then there exists an $O(1)$-Lipschitz $F:{\mathbf X}\to {\mathbf Y}$ such that $\|F(a)-f(a)\|_{\mathbf Y}\lesssim n{\varepsilon}$ for all $a\in \mathcal{N}$. We prove that this is optimal up to lower order factors, i.e., sometimes $\max_{a\in {\mathcal{N}}} \|F(a)-f(a)\|_{\mathbf Y}\gtrsim n^{1-o(1)}{\varepsilon}$ for every $O(1)$-Lipschitz $F:{\mathbf X}\to {\mathbf Y}$. This improves Bourgain's lower bound of $\max_{a\in {\mathcal{N}}} \|F(a)-f(a)\|_{\mathbf Y}\gtrsim n^{c}{\varepsilon}$ for some $0<c<\frac12$. If ${\mathbf X}=\ell_2^n$, then the approximation in the almost extension theorem can be improved to $\max_{a\in {\mathcal{N}}} \|F(a)-f(a)\|_{\mathbf Y}\lesssim \sqrt{n}{\varepsilon}$. We prove that this is sharp, i.e., sometimes $\max_{a\in {\mathcal{N}}} \|F(a)-f(a)\|_{\mathbf Y}\gtrsim \sqrt{n}{\varepsilon}$ for every $O(1)$-Lipschitz $F:\ell_2^n\to {\mathbf Y}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源