论文标题

如何通过不同的主方程表示设计量子突变轨迹

How to design quantum-jump trajectories via distinct master equation representations

论文作者

Chruściński, Dariusz, Luoma, Kimmo, Piilo, Jyrki, Smirne, Andrea

论文摘要

从概念和实际的观点来看,每个开放系统动力学都可以与无限的许多随机图片(称为脱离)相关联,在几种情况下都非常有用。在这里,着眼于量子突变的解体,我们证明了如何将基础主方程的术语分配给随机描述的确定性和跳跃部分,从而存在固有的自由,这导致了许多定性不同的分离。作为相关示例,我们表明,在某些确定的条件下可以选择后跳的状态的固定基础,或者即使在外部驾驶的情况下,确定性的进化也可以由所选时间独立的非依赖性的非温和的汉密尔顿人设置。我们的方法依赖于费率运营商的定义,其阳性将每个分解与连续测量方案脱离,并且与已知但尚未广泛使用的属性相关,以对量子动态进行分类,称为耗散性。从正式的数学概念开始,我们的结果使我们能够获得对开放量子系统动态的基本见解并丰富其数值模拟。

Every open-system dynamics can be associated to infinitely many stochastic pictures, called unravelings, which have proved to be extremely useful in several contexts, both from the conceptual and the practical point of view. Here, focusing on quantum-jump unravelings, we demonstrate that there exists inherent freedom in how to assign the terms of the underlying master equation to the deterministic and jump parts of the stochastic description, which leads to a number of qualitatively different unravelings. As relevant examples, we show that a fixed basis of post-jump states can be selected under some definite conditions, or that the deterministic evolution can be set by a chosen time-independent non-Hermitian Hamiltonian, even in the presence of external driving. Our approach relies on the definition of rate operators, whose positivity equips each unraveling with a continuous-measurement scheme and is related to a long known but so far not widely used property to classify quantum dynamics, known as dissipativity. Starting from formal mathematical concepts, our results allow us to get fundamental insights into open quantum system dynamics and to enrich their numerical simulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源