论文标题
全量子电路,量子树和Landau-Ginsburg理论中的测量和纠缠相变
Measurement and entanglement phase transitions in all-to-all quantum circuits, on quantum trees, and in Landau-Ginsburg theory
论文作者
论文摘要
一个量子多体系统的动力学包括以非零速率以不同的动力学阶段,具有不同的纠缠特性。我们介绍了测量诱导的相变(MPT)以及随机张量网络中的纠缠跃迁的理论方法。我们的许多结果都是用于具有单位和测量值的“全能”量子电路,其中任何量子都可以将其搭配到其他任何量子,以及相关的设置,其中一些低维模型的并发症减少了。我们还提出了任何有限维度的空间局部系统的现场理论描述。为了构建直觉,我们首先解决了最简单的“最小切割”玩具模型,以在全能电路中使用纠缠动态,在此近似中找到缩放形式和指数。然后,我们证明某些全能的测量电路可以通过利用电路几何形状中的局部树状结构来确切的结果。因此,我们绕道而行,为纠缠相变的一般普遍结果带来随机树张量网络,与树上的经典定向聚合物建立联系。然后,我们将这些结果与MPT和更简单的“强制测量相变”(FMPT)中的数字进行比较。我们使用对初始时间和最后一次传播的信息量敏感的观察力敏感的观察力敏感,从而在全面电路中表征了两个不同的阶段。我们演示了可以从简单模型中理解的两个阶段的签名。最后,我们建议在随机张量网络中为MPT,FMPT和纠缠过渡的Landau-Ginsburg-Wilson样领域理论。该分析显示了MPT与其他情况之间存在令人惊讶的差异。我们讨论了使用其他结构(例如自由屈服结构)和未来问题的测量动力学。
A quantum many-body system whose dynamics includes local measurements at a nonzero rate can be in distinct dynamical phases, with differing entanglement properties. We introduce theoretical approaches to measurement-induced phase transitions (MPT) and also to entanglement transitions in random tensor networks. Many of our results are for "all-to-all" quantum circuits with unitaries and measurements, in which any qubit can couple to any other, and related settings where some of the complications of low-dimensional models are reduced. We also propose field theory descriptions for spatially local systems of any finite dimensionality. To build intuition, we first solve the simplest "minimal cut" toy model for entanglement dynamics in all-to-all circuits, finding scaling forms and exponents within this approximation. We then show that certain all-to-all measurement circuits allow exact results by exploiting local tree-like structure in the circuit geometry. For this reason, we make a detour to give general universal results for entanglement phase transitions random tree tensor networks, making a connection with classical directed polymers on a tree. We then compare these results with numerics in all-to-all circuits, both for the MPT and for the simpler "Forced Measurement Phase Transition" (FMPT). We characterize the two different phases in all-to-all circuits using observables sensitive to the amount of information propagated between initial and final time. We demonstrate signatures of the two phases that can be understood from simple models. Finally we propose Landau-Ginsburg-Wilson-like field theories for the MPT, the FMPT, and entanglement transitions in random tensor networks. This analysis shows a surprising difference between the MPT and the other cases. We discuss measurement dynamics with additional structure (e.g. free-fermion structure), and questions for the future.