论文标题
有效的早期恒星反馈可以通过减少超新星聚类来抑制银河流出
Efficient early stellar feedback can suppress galactic outflows by reducing supernova clustering
论文作者
论文摘要
我们提出了一组新颖的恒星反馈模型,该模型在移动网格代码AREPO中实现,该模型是为带有接近PARSEC(或更好)分辨率的星系形成模拟而设计的。其中包括对IMF的恒星的明确采样,可以将反馈与单个大型恒星联系起来,改进的HII区域建模方法,来自空间变化的FUV场和超新星反馈的光电加热。 We perform a suite of 32 simulations of isolated $M_\mathrm{vir} = 10^{10}\,\mathrm{M_\odot}$ galaxies with a baryonic mass resolution of $20\,\mathrm{M_\odot}$ in order to study the non-linear coupling of the different feedback channels.我们发现,光电离和超新星反馈都独立地能够将恒星形成调节到同一水平,而光电加热则效率低下。与超新星相比,光电离会产生的恒星形成历史更光滑。当将所有反馈通道组合在一起时,恒星形成率的额外抑制作用很小。但是,相对于仅超新星模拟,流出速率大大降低。我们表明,这是由光电离反馈抑制超新星聚集的直接引起的,在第一个超新星之前破坏了恒星形成云。我们证明了我们的结果对恒星形成处方,反馈模型和磁盘的气体分数的变化是可靠的。我们的结果还意味着,如果所采用的星形颗粒质量大于单个恒星的质量,则恒星形成和流出质量的爆发性可能会被高估,因为这会施加最小的簇大小。
We present a novel set of stellar feedback models, implemented in the moving-mesh code Arepo, designed for galaxy formation simulations with near-parsec (or better) resolution. These include explicit sampling of stars from the IMF, allowing feedback to be linked to individual massive stars, an improved method for the modelling of H II regions, photoelectric heating from a spatially varying FUV field and supernova feedback. We perform a suite of 32 simulations of isolated $M_\mathrm{vir} = 10^{10}\,\mathrm{M_\odot}$ galaxies with a baryonic mass resolution of $20\,\mathrm{M_\odot}$ in order to study the non-linear coupling of the different feedback channels. We find that photoionization and supernova feedback are both independently capable of regulating star formation to the same level, while photoelectric heating is inefficient. Photoionization produces a considerably smoother star formation history than supernovae. When all feedback channels are combined, the additional suppression of star formation rates is minor. However, outflow rates are substantially reduced relative to the supernova only simulations. We show that this is directly caused by a suppression of supernova clustering by the photoionization feedback, disrupting star forming clouds prior to the first supernovae. We demonstrate that our results are robust to variations of our star formation prescription, feedback models and the gas fraction of the disk. Our results also imply that the burstiness of star formation and the mass loading of outflows may be overestimated if the adopted star particle mass is considerably larger than the mass of individual stars because this imposes a minimum cluster size.