论文标题
学习低级模型的混合物
Learning Mixtures of Low-Rank Models
论文作者
论文摘要
我们研究了低级别模型的学习混合物的问题,即从每个未标记的线性测量值重建多个低级矩阵。该问题通过带来潜在变量(即未知标签)和结构先验(即低级别的结构)来考虑两个广泛研究的设置 - 低级矩阵传感和混合线性回归。为了应对由未标记的异质数据和低复杂性结构引起的非跨性别问题,我们开发了一个三阶段的元偏金属,保证在高斯设计下恢复具有近乎最佳样本和计算复杂性的未知矩阵。另外,提出的算法在随机噪声中证明是稳定的。我们用经验证据来补充理论研究,以证实我们算法的功效。
We study the problem of learning mixtures of low-rank models, i.e. reconstructing multiple low-rank matrices from unlabelled linear measurements of each. This problem enriches two widely studied settings -- low-rank matrix sensing and mixed linear regression -- by bringing latent variables (i.e. unknown labels) and structural priors (i.e. low-rank structures) into consideration. To cope with the non-convexity issues arising from unlabelled heterogeneous data and low-complexity structure, we develop a three-stage meta-algorithm that is guaranteed to recover the unknown matrices with near-optimal sample and computational complexities under Gaussian designs. In addition, the proposed algorithm is provably stable against random noise. We complement the theoretical studies with empirical evidence that confirms the efficacy of our algorithm.