论文标题
增强高分辨率气候变化预测的卷积LSTM
Augmented Convolutional LSTMs for Generation of High-Resolution Climate Change Projections
论文作者
论文摘要
气候变量(例如温度和降水)极端指标变化的预测对于评估气候变化对人造和自然系统的潜在影响至关重要,包括关键基础设施和生态系统。尽管影响评估和适应计划依赖于高分辨率的预测(通常以几公里为单位),但最先进的地球系统模型(ESM)在几百公里的空间分辨率下可用。获得ESM的高分辨率投影的当前解决方案包括在粗尺度上考虑信息以在本地尺度上进行预测的缩减方法。局部气候变量(例如,温度和降水)和大规模预测因子(例如压力场)之间的复杂和非线性相互依赖性激发了基于神经网络的超分辨率架构的使用。在这项工作中,我们提出了辅助变量,以统计缩小为时空神经结构。当前的研究每天对降水量变量从1.15度(〜115公里)的ESM产量进行降低,比世界上最气候最多样化的国家(印度)之间的降水量变量。我们展示了针对三个流行的最新基线的显着改善增长,并具有更好的预测极端事件的能力。为了促进可再现的研究,我们可以在公共领域中提供所有代码,处理的数据集和训练有素的模型。
Projection of changes in extreme indices of climate variables such as temperature and precipitation are critical to assess the potential impacts of climate change on human-made and natural systems, including critical infrastructures and ecosystems. While impact assessment and adaptation planning rely on high-resolution projections (typically in the order of a few kilometers), state-of-the-art Earth System Models (ESMs) are available at spatial resolutions of few hundreds of kilometers. Current solutions to obtain high-resolution projections of ESMs include downscaling approaches that consider the information at a coarse-scale to make predictions at local scales. Complex and non-linear interdependence among local climate variables (e.g., temperature and precipitation) and large-scale predictors (e.g., pressure fields) motivate the use of neural network-based super-resolution architectures. In this work, we present auxiliary variables informed spatio-temporal neural architecture for statistical downscaling. The current study performs daily downscaling of precipitation variable from an ESM output at 1.15 degrees (~115 km) to 0.25 degrees (25 km) over the world's most climatically diversified country, India. We showcase significant improvement gain against three popular state-of-the-art baselines with a better ability to predict extreme events. To facilitate reproducible research, we make available all the codes, processed datasets, and trained models in the public domain.