论文标题

Edge Intelligence授权无人机用于自动化风电场监控的智能电网

Edge Intelligence Empowered UAVs for Automated Wind Farm Monitoring in Smart Grids

论文作者

Chung, Hwei-Ming, Maharjan, Sabita, Zhang, Yan, Eliassen, Frank, Yuan, Tingting

论文摘要

随着风力发电的剥削,可能会在偏远地区部署更多的涡轮机,可能会有严格的工作条件(例如,海上风电场)。不利的工作环境可能会导致涡轮机的大量操作和维护成本。部署无人机(UAVS)进行涡轮机检查被认为是手动检查的可行替代方法。自动无人机检查的一​​个重要目标是最大程度地减少无人机检查所有涡轮机的飞行时间。因此,本文的首要贡献是制定优化问题,以计算满足上述目标的涡轮机检查的最佳路线。另一方面,无人机上有限的计算能力可用于增加风力涡轮机的发电。可以通过控制涡轮机的偏航角来优化涡轮机的发电。预测风速和风向等风条件对于解决两个优化问题至关重要。因此,无人机可以利用其有限的计算能力来执行风预测。这样,在海上风电场的无人机形成了边缘情报。在预测的风条件下,我们设计了两种算法来解决公式的问题,然后使用Realworld数据评估所提出的方法。结果表明,与所选的基线方法相比,与小时预测相比,提出的方法可改善涡轮发电的44%,而无人机的飞行时间减少了25%。

With the exploitation of wind power, more turbines will be deployed at remote areas possibly with harsh working conditions (e.g., offshore wind farm). The adverse working environment may lead to massive operating and maintenance costs of turbines. Deploying unmanned aerial vehicles (UAVs) for turbine inspection is considered as a viable alternative to manual inspections. An important objective of automated UAV inspection is to minimize the flight time of the UAVs to inspect all the turbines. A first contribution of this paper is thus formulating an optimization problem to compute the optimal routes for turbine inspection satisfying the above goal. On the other hand, the limited computational capability on UAVs can be used to increase the power generation of wind turbine. Power generation from the turbines can be optimized by controlling the yaw angle of the turbines. Forecasting wind conditions such as wind speed and wind direction is crucial for solving both optimization problems. Therefore, UAVs can utilize their limited computational capability to perform wind forecasting. In this way, UAVs form edge intelligence in offshore wind farm. With the forecasted wind conditions, we design two algorithms to solve the formulated problems, and then evaluate the proposed methods with realworld data. The results reveal that the proposed methods offer an improvement of 44% of the power generation from the turbine compared to hour-ahead forecasting and 25% reduction of the flight time of the UAVs compared to the chosen baseline method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源