论文标题

莫里斯 - 岸的非分类系统的转换

Morris-Shore transformation for non-degenerate systems

论文作者

Zlatanov, K. N., Vasilev, G. S., Vitanov, N. V.

论文摘要

莫里斯岸(MS)转换是将多态量子系统动力学分解为一组两态系统和未耦合的单个状态的强大工具。它假定两组状态,其中第一组中的任何状态都可以耦合到第二组中的任何状态,但是每个集合中的任何状态都可以在自己之间耦合。另一个重要的条件是每个组中各州的堕落性,尽管各组之间的所有耦合都可以通过相同的失调从共振中解谐。退化条件限制了MS转换在各种物理有趣的情况下的应用,例如在存在电场和/或磁场或光移的情况下,在每种状态中取消了堕落的状态,例如当这些集合包含非零角动量的水平的磁性分离。本文将MS转换扩展到了这种情况,在这种情况下,这两组中的每一集中的状态都不排效。为此,我们开发了一种替代莫里斯 - 岸转换的替代方法,该方式可以应用于非排分状态集。我们提出了一种广义的特征值方法,通过该方法,在堕落的小小的引起的限制下,我们能够产生一种有效的哈密顿量,该有效的哈密顿量与非脱位的哈密顿量相等。有效的汉密尔顿人可以通过两步相似性转换映射到莫里斯岸的基础。在衍生一般框架之后,我们演示了该技术在流行的Lambda三州系统以及四州三脚架,双Lambda和Diamond Systems中的应用。在所有这些系统中,我们的形式主义使我们能够将它们的量子动态减少到更简单的两国系统,即使在存在各种引导的情况下,例如由频率漂移的外部字段生成。

The Morris-Shore (MS) transformation is a powerful tool for decomposition of the dynamics of multistate quantum systems to a set of two-state systems and uncoupled single states. It assumes two sets of states wherein any state in the first set can be coupled to any state in the second set but the states within each set are not coupled between themselves. Another important condition is the degeneracy of the states in each set, although all couplings between the states from different sets can be detuned from resonance by the same detuning. The degeneracy condition limits the application of the MS transformation in various physically interesting situations, e.g. in the presence of electric and/or magnetic fields or light shifts, which lift the degeneracy in each set of states, e.g. when these sets comprise the magnetic sublevels of levels with nonzero angular momentum. This paper extends the MS transformation to such situations, in which the states in each of the two sets are nondegenerate. To this end, we develop an alternative way for the derivation of Morris-Shore transformation, which can be applied to non-degenerate sets of states. We present a generalized eigenvalue approach, by which, in the limit of small detunings from degeneracy, we are able to generate an effective Hamiltonian that is dynamically equivalent to the non-degenerate Hamiltonian. The effective Hamiltonian can be mapped to the Morris-Shore basis with a two-step similarity transformation. After the derivation of the general framework, we demonstrate the application of this technique to the popular Lambda three-state system, and the four-state tripod, double-Lambda and diamond systems. In all of these systems, our formalism allows us to reduce their quantum dynamics to simpler two-state systems even in the presence of various detunings, e.g. generated by external fields of frequency drifts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源