论文标题
相空间中的量子规范合奏
The quantum canonical ensemble in phase space
论文作者
论文摘要
热平衡中量子系统的密度算子及其环境的密度取决于普朗克的常数和温度。在高温下,Weyl表示,即热静电函数,与相位空间中相应的经典分布没有区别,而低温极限单身是系统的hamiltonian的量子基态。在所有制度中,任意可观察物的热平均值都是通过积分来评估的,好像热维格函数是经典分布。 量子繁殖器的半经典近似延伸到假想的热时间,桥接了高温和低温极限之间的复杂中间区域。这会导致对经典高温状态的简单量子校正,而不论运动是规则还是混乱的。整个半经典近似的变体,尽管在加倍的相空间中,但在评估热平均值时避免了对特定轨迹的任何搜索。双重汉密尔顿人用鞍座代替了原始系统的哈密顿量的稳定最小值,从而消除了局部周期性轨道,从静止的阶段评估中的静止相位评估和平均分区函数和热平均值。
The density operator for a quantum system in thermal equilibrium with its environment depends on Planck's constant, as well as the temperature. At high temperatures, the Weyl representation, that is, the thermal Wigner function, becomes indistinguishable from the corresponding classical distribution in phase space, whereas the low temperature limit singles out the quantum ground state of the system's Hamiltonian. In all regimes, thermal averages of arbitrary observables are evaluated by integrals, as if the thermal Wigner function were a classical distribution. The extension of the semiclassical approximation for quantum propagators to an imaginary thermal time, bridges the complex intervening region between the high and the low temperature limit. This leads to a simple quantum correction to the classical high temperature regime, irrespective of whether the motion is regular or chaotic. A variant of the full semiclassical approximation with a real thermal time, though in a doubled phase space, avoids any search for particular trajectories in the evaluation of thermal averages. The double Hamiltonian substitutes the stable minimum of the original system's Hamiltonian by a saddle, which eliminates local periodic orbits from the stationary phase evaluation of the integrals for the partition function and thermal averages.