论文标题
多用户的最佳资源分配DMA-FURLLC MEC系统
Optimal Resource Allocation for Multi-user OFDMA-URLLC MEC Systems
论文作者
论文摘要
在本文中,我们研究了移动边缘计算(MEC)系统中的多用户正交频分部(OFDMA)超可靠的低潜伏期通信(URLLC)的资源分配算法设计。为了满足URLLC MEC系统的严格端到端延迟和可靠性要求,我们提出了联合上行链路 - 下链接资源分配和有限的区块长度传输。此外,我们在上行链路和下行链路帧之间采用了部分时间重叠,以最大程度地减少端到端延迟,这引入了新的时间因果关系约束。提出的资源分配算法是作为优化问题提出的,以最大程度地限制网络的总加权功率消耗,这是对在最大允许计算时间内计算出的URLLC用户位数量的限制,即计算任务的端到端延迟。尽管公式化的优化问题是非跨性别的,但我们使用基于离散单调优化理论的分支结合方法开发了全球最佳解决方案。分支和结合算法将总功耗的上限最小化,直到收敛到全球最佳值。此外,为了在计算复杂性和性能之间取得平衡,我们提出了基于连续的凸近似和二阶锥形技术的两种有效的次优算法。我们的仿真结果表明,所提出的资源分配算法设计有助于MEC系统中的URLLC,并且与三个基线方案相比,可以节省大量功率。此外,我们的仿真结果表明,所提出的次优算法在性能和复杂性之间提供了不同的权衡,并在相对较低的复杂性下实现了近距离的性能。
In this paper, we study resource allocation algorithm design for multi-user orthogonal frequency division multiple access (OFDMA) ultra-reliable low latency communication (URLLC) in mobile edge computing (MEC) systems. To meet the stringent end-to-end delay and reliability requirements of URLLC MEC systems, we propose joint uplink-downlink resource allocation and finite blocklength transmission. Furthermore, we employ a partial time overlap between the uplink and downlink frames to minimize the end-to-end delay, which introduces a new time causality constraint. The proposed resource allocation algorithm is formulated as an optimization problem for minimization of the total weighted power consumption of the network under a constraint on the number of URLLC user bits computed within the maximum allowable computation time, i.e., the end-to-end delay of a computation task. Despite the non-convexity of the formulated optimization problem, we develop a globally optimal solution using a branch-and-bound approach based on discrete monotonic optimization theory. The branch-and-bound algorithm minimizes an upper bound on the total power consumption until convergence to the globally optimal value. Furthermore, to strike a balance between computational complexity and performance, we propose two efficient suboptimal algorithms based on successive convex approximation and second-order cone techniques. Our simulation results reveal that the proposed resource allocation algorithm design facilitates URLLC in MEC systems, and yields significant power savings compared to three baseline schemes. Moreover, our simulation results show that the proposed suboptimal algorithms offer different trade-offs between performance and complexity and attain a close-to-optimal performance at comparatively low complexity.