论文标题
多尺度网络重新归一化:不带几何形状的规模不变性
Multiscale network renormalization: scale-invariance without geometry
论文作者
论文摘要
具有晶格几何形状的系统可以重新归一化,从而在公制空间中利用其坐标,这自然定义了粗粒节点。相比之下,复杂的网络由于其小世界特征和缺乏明显的几何嵌入而无视通常的技术。当前的网络重新规范化方法需要强大的假设(例如社区结构,双曲线,无尺度拓扑),因此与通用图和普通晶格保持不相容。在这里,我们介绍了一个适用于异质粗粒层的任何层次结构有效的图形重新归一化方案,从而允许在多个尺度上定义“块状节点”。这种方法确定了一类规模不变的网络,其特征是对节点附加的添加性隐藏变量的必要和特定依赖性以及可选的二元因素。如果隐藏变量被退火,它们会导致具有各种比例性和有限局部聚类的无标度网络,即使在稀疏的制度和没有几何形状的情况下也是如此。如果它们被淬灭,他们可以指导具有节点属性和距离依赖性或社区的现实世界网络的重新归一化。作为应用程序,我们得出了适用于任意地理分区的国际贸易网络的准确多尺度模型。这些结果突出了无标度和规模不变网络之间的深层概念区别,并提供了无几何形状的重新归一化途径。
Systems with lattice geometry can be renormalized exploiting their coordinates in metric space, which naturally define the coarse-grained nodes. By contrast, complex networks defy the usual techniques, due to their small-world character and lack of explicit geometric embedding. Current network renormalization approaches require strong assumptions (e.g. community structure, hyperbolicity, scale-free topology), thus remaining incompatible with generic graphs and ordinary lattices. Here we introduce a graph renormalization scheme valid for any hierarchy of heterogeneous coarse-grainings, thereby allowing for the definition of 'block-nodes' across multiple scales. This approach identifies a class of scale-invariant networks characterized by a necessary and specific dependence on additive hidden variables attached to nodes, plus optional dyadic factors. If the hidden variables are annealed, they lead to realistic scale-free networks with assortativity and finite local clustering, even in the sparse regime and in absence of geometry. If they are quenched, they can guide the renormalization of real-world networks with node attributes and distance-dependence or communities. As an application, we derive an accurate multiscale model of the International Trade Network applicable across arbitrary geographic partitions. These results highlight a deep conceptual distinction between scale-free and scale-invariant networks, and provide a geometry-free route to renormalization.