论文标题
关于植物斑点的线性独立性的三种变体
Three variations on the linear independence of grouplikes in a coalgebra
论文作者
论文摘要
众所周知,在一个田地上的山地元素是线性独立的。在这里,我们证明了该结果的三种变体。其中一种是对核桥对交换环的概括(在这种情况下,线性独立性必须被较弱的陈述所取代)。另一个是一个更强大的陈述,该陈述在交换性的双gge骨中占据(不可用的假设)。最后一个变体是bialgebra的字符(而不是粘合元素)的线性独立性结果。
The grouplike elements of a coalgebra over a field are known to be linearly independent over said field. Here we prove three variants of this result. One is a generalization to coalgebras over a commutative ring (in which case the linear independence has to be replaced by a weaker statement). Another is a stronger statement that holds (un-der stronger assumptions) in a commutative bialgebra. The last variant is a linear independence result for characters (as opposed to grouplike elements) of a bialgebra.