论文标题
LA-HCN:基于标签的层次多标签文本clexclassification神经网络的关注
LA-HCN: Label-based Attention for Hierarchical Multi-label TextClassification Neural Network
论文作者
论文摘要
近年来,由于其适用于众多现实世界应用程序,近年来,层次多标签文本分类(HMTC)一直在越来越受欢迎。现有的HMTC算法主要集中在分类器的设计上,例如本地,全球或它们的组合。但是,很少有研究集中在层次特征提取上,并探讨了层次标签与文本之间的关联。在本文中,我们提出了一个基于标签的关注,以对分层mutlti-Label文本分类神经网络(LA-HCN)提出,其中新型基于标签的注意模块旨在根据不同层次结构级别的标签从文本中层次提取重要信息。此外,在保留基于层次标签的信息的同时,跨级别共享层次信息。获得并用于促进各自的本地和全球分类的单独的本地和全球文档嵌入。在我们的实验中,LA-HCN在四个公共HMTC数据集上优于其他基于神经网络的HMTC算法的其他最先进的HMTC算法。消融研究还证明了拟议的基于标签的注意模块以及新型的本地和全球嵌入和分类的有效性。通过可视化学习的注意力(单词),我们发现LA-HCN能够提取与不同标签相对应的有意义的信息,这些信息提供了可能对人类分析师有帮助的解释性。
Hierarchical multi-label text classification (HMTC) has been gaining popularity in recent years thanks to its applicability to a plethora of real-world applications. The existing HMTC algorithms largely focus on the design of classifiers, such as the local, global, or a combination of them. However, very few studies have focused on hierarchical feature extraction and explore the association between the hierarchical labels and the text. In this paper, we propose a Label-based Attention for Hierarchical Mutlti-label Text Classification Neural Network (LA-HCN), where the novel label-based attention module is designed to hierarchically extract important information from the text based on the labels from different hierarchy levels. Besides, hierarchical information is shared across levels while preserving the hierarchical label-based information. Separate local and global document embeddings are obtained and used to facilitate the respective local and global classifications. In our experiments, LA-HCN outperforms other state-of-the-art neural network-based HMTC algorithms on four public HMTC datasets. The ablation study also demonstrates the effectiveness of the proposed label-based attention module as well as the novel local and global embeddings and classifications. By visualizing the learned attention (words), we find that LA-HCN is able to extract meaningful information corresponding to the different labels which provides explainability that may be helpful for the human analyst.