论文标题

中子物质的变分和镶木图计算。 ii。扭曲的链图

Variational and parquet-diagram calculations for neutron matter. II. Twisted Chain Diagrams

论文作者

Krotscheck, E., Wang, J.

论文摘要

我们开发了一种明显的微观方法来处理在旋转旋转和自旋三个状态中具有不同相互作用的强烈相互作用的核系统。在第一步中,我们分析了已建议描述这种系统的变分波函数,并证明每当旋转平滑线和自旋三个态的相互作用都非常不同时,所谓的换向器贡献就会产生重要的效果。然后,我们将这些贡献确定为术语,用扰动理论的语言对应于非票房图。我们以jastrow-feenberg方法建议的方式包括这些图表,并表明,在短距离内,来自非票价贡献的校正比所有其他多体效应都要大。

We develop a manifestly microscopic method to deal with strongly interacting nuclear systems that have different interactions in spin-singlet and spin-triplet states. In a first step we analyze variational wave functions that have been suggested to describe such systems, and demonstrate that the so-called commutator contributions can have important effects whenever the interactions in the spin-singlet and the spin-triplet states are very different. We then identify these contributions as terms that correspond, in the language of perturbation theory, to non-parquet diagrams. We include these diagrams in a way that is suggested by the Jastrow-Feenberg approach and show that the corrections from non-parquet contributions are, at short distances, larger than all other many-body effects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源