论文标题

三阶张力张子的分解

Decomposition of third-order constitutive tensors

论文作者

Itin, Yakov, Reches, Shulamit

论文摘要

三阶张量被广泛用作数学工具,用于在固态物理学中建模培养基的物理特性。在大多数情况下,它们是基本物理数量之间比例性的构成张量。本构张量可以视为培养基的完整物理参数集。本构张量的代数特征可以看作是适当识别天然物质,晶体的工具,并设计具有规定特性的人造纳米材料。在本文中,我们研究了相对于其不变分解的通用3阶张量的代数特性。在与基本矢量空间上作用的不同组的对应关系中,我们将张量分解类型的层次结构呈现为不变的子镜。特别是,我们讨论了高阶张量分解的非唯一性和降低性问题的问题。对于通用的3-RD阶张量,这些特征将明确描述。 在规定对称性的特殊张量的情况下,分解是不可还原和独特的。我们为两个物理有趣的模型提供了明确的结果:对称对称性的压电张量和霍尔张量作为一对偏度对称的示例。

Third-order tensors are widely used as a mathematical tool for modeling physical properties of media in solid state physics. In most cases, they arise as constitutive tensors of proportionality between basic physics quantities. The constitutive tensor can be considered as a complete set of physical parameters of a medium. The algebraic features of the constitutive tensor can be seen as a tool for proper identification of natural material, as crystals, and for design the artificial nano-materials with prescribed properties. In this paper, we study the algebraic properties of a generic 3-rd order tensor relative to its invariant decomposition. In a correspondence to different groups acted on the basic vector space, we present the hierarchy of types of tensor decomposition into invariant subtensors. In particular, we discuss the problem of non-uniqueness and reducibility of high-order tensor decomposition. For a generic 3-rd order tensor, these features are described explicitly. In the case of special tensors of a prescribed symmetry, the decomposition turns out to be irreducible and unique. We present the explicit results for two physically interesting models: the piezoelectric tensor as an example of a pair symmetry and the Hall tensor as an example of a pair skew-symmetry.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源