论文标题

限制拖网过程的定理

Limit Theorems for Trawl Processes

论文作者

Pakkanen, Mikko S., Passeggeri, Riccardo, Sauri, Orimar, Veraart, Almut E. D.

论文摘要

在这项工作中,我们得出了拖网过程的限制定理。首先,我们研究了离散的拖网过程的部分总和的渐近行为$(x_ {x_ {iΔ_{n}})_ {i = 0}^{\ lfloor nt \ rfloor-rfloor-rfloor-rfloor-1} $ $nδ_{n} \rightarrowμ\在[0,+\ infty] $中。其次,随着拖网种子的Lévy度量生长到无穷大,我们得出了拖网过程的功能极限定理,并表明限制过程具有高斯移动平均值。

In this work we derive limit theorems for trawl processes. First,we study the asymptotic behaviour of the partial sums of the discretized trawl process $(X_{iΔ_{n}})_{i=0}^{\lfloor nt\rfloor-1}$, under the assumption that as $n\uparrow\infty$, $Δ_{n}\downarrow0$ and $nΔ_{n}\rightarrowμ\in[0,+\infty]$. Second, we derive a functional limit theorem for trawl processes as the Lévy measure of the trawl seed grows to infinity and show that the limiting process has a Gaussian moving average representation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源