论文标题
3堆放排列的渐近学
Asymptotics of 3-stack-sortable permutations
论文作者
论文摘要
我们得出了一个简单的功能方程,其两个催化变量表征了3个堆栈分类排列的生成函数。使用此功能方程,我们将174-期限的系列扩展到1000个项。从这个系列中,我们推测生成函数的行为为$$ w(t)\ sim c_0(1-μ_3t)^α\ cdot \ cdot \ log^β(1-μ_3t),$$,因此$$ [t^n] w(t) \log^λ{n}} ,$$ where $μ_3 = 9.69963634535(30),$ $α= 2.0 \pm 0.25.$ If $α= 2$ exactly, then $λ= -β+1$, and we estimate $β\approx -3.$ If $α$ is not an integer, then $λ=-β$, but we cannot give a useful estimate $β$。增长恒定估计(仅)与第一作者的猜想相矛盾,即$$ 9.702 <μ_3\ le 9.704。$$我们还证明,我们还证明了$μ_3\ geq 9.4854 $的新的严格下层$,使我们可以证明Bóna的猜想。 然后,我们进一步使用差分符号符号来扩展该系列,以获得近似系数$ O(t^{2000}),预计将准确至$ 20 $显着的数字,并使用近似系数提供支持从精确系数获得的结果的其他证据。
We derive a simple functional equation with two catalytic variables characterising the generating function of 3-stack-sortable permutations. Using this functional equation, we extend the 174-term series to 1000 terms. From this series, we conjecture that the generating function behaves as $$W(t) \sim C_0(1-μ_3 t)^α\cdot \log^β(1-μ_3 t), $$ so that $$[t^n]W(t)=w_n \sim \frac{c_0μ_3^n}{ n^{(α+1)}\cdot \log^λ{n}} ,$$ where $μ_3 = 9.69963634535(30),$ $α= 2.0 \pm 0.25.$ If $α= 2$ exactly, then $λ= -β+1$, and we estimate $β\approx -3.$ If $α$ is not an integer, then $λ=-β$, but we cannot give a useful estimate of $β$. The growth constant estimate (just) contradicts a conjecture of the first author that $$9.702 < μ_3 \le 9.704.$$ We also prove a new rigorous lower bound of $μ_3\geq 9.4854$, allowing us to disprove a conjecture of Bóna. We then further extend the series using differential-approximants to obtain approximate coefficients $O(t^{2000}),$ expected to be accurate to $20$ significant digits, and use the approximate coefficients to provide additional evidence supporting the results obtained from the exact coefficients.