论文标题

Raynaud定理的算术变体

An arithmetic variant of Raynaud's theorem

论文作者

Love, Jonathan, Taylor, Libby

论文摘要

众所周知,对于常规的可半固定曲线$ \ mathfrak x $,在DVR上具有代数封闭的残留场,$ \ mathfrak x $的双纤维的双图的跨越树木均与jacobian型号的特殊纤维的组成部分,该组件是$ \ mathfrak x $的Néron模型的特殊纤维。我们证明了这一事实的概括,该事实不需要使用双图的组合版本来编码有关$ \ Mathfrak x $上的分隔线的算术信息,因此不需要将残基字段封闭。

It is well known that for a regular semistable curve $\mathfrak X$ over a DVR with algebraically closed residue field, the spanning trees of the dual graph of the special fiber of $\mathfrak X$ are in bijection with components of the special fiber of the Néron model of the Jacobian of $\mathfrak X$. We prove a generalization of this fact that does not require the residue field to be algebraically closed, using a combinatorially enriched version of the dual graph to encode arithmetic information about divisors on $\mathfrak X$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源