论文标题
Aqua:h $ _2 $ o行星模型状态方程的集合
AQUA: A Collection of H$_2$O Equations of State for Planetary Models
论文作者
论文摘要
水是行星结构建模中的关键化学元素之一。由于其复杂的相图,状态覆盖的方程通常仅在行星建模中所需的压力温度空间的一部分。我们构建一个h $ _2 $ o的状态方程,范围从0.1 pa到400 tpa和150 k到$ 10^{5} $ k,可用于对行星的内部进行建模。我们结合了在本地区域有效的状态方程,以形成跨越上述压力和温度范围的状态的连续方程。我们为最重要的热力学量(即密度,绝热温度梯度,熵,内部能量,内部能量和水的体积速度)提供了表格值。为了更好的可用性,我们还计算了密度 - 温度和密度 - 内部能网格。我们与其他流行的状态等方程(如Aneos和Qeos)相比,我们进一步讨论了该状态方程对行星质量半径关系的影响。 Aqua是对行星模型有用的现有状态方程的组合。我们表明,在大多数地区,Aqua对水的热力学一致描述。在超过10 GPA的压力下,与Aneos或Qeos相比,Aqua的系统性更大。先前提出的状态方程中已经存在的功能,这是这项工作的主要基础方程。我们表明,国家方程式的选择可能会对群众关系产生很大的影响,这强调了未来发展在国家方程和高压下水的实验数据中的重要性。
Water is one of the key chemical elements in planetary structure modelling. Due to its complex phase diagram, equations of state cover often only parts of the pressure - temperature space needed in planetary modelling. We construct an equation of state of H$_2$O spanning a very wide range from 0.1 Pa to 400 TPa and 150 K to $10^{5}$ K, which can be used to model the interior of planets. We combine equations of state valid in localised regions to form a continuous equation of state spanning over said pressure and temperature range. We provide tabulated values for the most important thermodynamic quantities, i.e., density, adiabatic temperature gradient, entropy, internal energy and bulk speed of sound of water over this pressure and temperature range. For better usability we also calculated density - temperature and density - internal energy grids. We discuss further the impact of this equation of state on the mass radius relation of planets compared to other popular equation of states like ANEOS and QEOS. AQUA is a combination of existing equation of state useful for planetary models. We show that AQUA is in most regions a thermodynamic consistent description of water. At pressures above 10 GPa AQUA predicts systematic larger densities than ANEOS or QEOS. A feature which was already present in a previously proposed equation of state, which is the main underlying equation of this work. We show that the choice of the equation of state can have a large impact on the mass-radius relation, which highlights the importance of future developments in the field of equation of states and regarding experimental data of water at high pressures.