论文标题

Force2Vec:平行力导向的图嵌入

Force2Vec: Parallel force-directed graph embedding

论文作者

Rahman, Md. Khaledur, Sujon, Majedul Haque, Azad, Ariful

论文摘要

嵌入算法的图将图嵌入到低维空间中,以使嵌入保持图的固有属性。虽然图形嵌入与图形可视化从根本上相关,但先前的工作并未明确利用此连接。我们开发了在图嵌入设置中使用强制指导的图形布局模型的Force2VEC,目的是在机器学习(ML)和可视化任务中出色。我们通过将其核心计算映射到线性代数并利用现代处理器中可用的多个并行级别来使Force2Vec高度平行。所得算法的数量级比现有方法快(平均比深路快43倍),并且可以在几个小时内从数十亿个边缘产生嵌入。与现有方法相比,Force2VEC在图形可视化方面更好,并且在ML任务(例如链接预测,节点分类和聚类)中执行相当或更好。源代码可从https://github.com/hipgraph/force2vec获得。

A graph embedding algorithm embeds a graph into a low-dimensional space such that the embedding preserves the inherent properties of the graph. While graph embedding is fundamentally related to graph visualization, prior work did not exploit this connection explicitly. We develop Force2Vec that uses force-directed graph layout models in a graph embedding setting with an aim to excel in both machine learning (ML) and visualization tasks. We make Force2Vec highly parallel by mapping its core computations to linear algebra and utilizing multiple levels of parallelism available in modern processors. The resultant algorithm is an order of magnitude faster than existing methods (43x faster than DeepWalk, on average) and can generate embeddings from graphs with billions of edges in a few hours. In comparison to existing methods, Force2Vec is better in graph visualization and performs comparably or better in ML tasks such as link prediction, node classification, and clustering. Source code is available at https://github.com/HipGraph/Force2Vec.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源