论文标题

在浮力存在下,在低雷诺数处的加热球的阻力

Drag of a Heated Sphere at Low Reynolds Numbers in the Presence of Buoyancy

论文作者

Ganguli, Swetava, Lele, Sanjiva K.

论文摘要

完全分辨的模拟用于在浮力存在下量化热传递的影响,以在$ 10^{ - 3} \ le re \ le re \ le re \ le re \ le re \ le Re \ le 10 $中在可变特性流体中的$ 10^{ - 3} \ le Re \ le 10 $中的空间固定加热的球形粒子。球体中的加热量均包含既有boussinesq近似位的加热状态和分解的状态。假定粒子具有较低的生物数,这意味着粒子在相同的温度下均匀,没有内部温度梯度。用惯性和粘性力缩放浮力产生了两个相关的非二大量,称为浮力诱发粘性雷诺数($ re_ {bv} $),浮力引起的惯性雷诺数($ re _ re _ {bi {bi {bi} $)。对于理想的气体,$ re_ {bv} $类似于grashof编号($ gr $)。没有$ re_ {bi} $(或等效地$ re_ {bv} $)的幅度没有假设。重力相对于自由流速度的方向的影响。当Froude编号($ fr $)降低和/或球的温度升高时,会观察到阻力系数值的较大偏差。在$ re_ {bi} $和$ re $上的适当约束下,在浮力存在下以低$ re $流向加热球的总阻力(混合对流)在10%的误差中,在两个规范设置中计算出的拖动的线性叠加在两个规范设置中:一个稳定移动的螺距在自然而然的范围内(一个自然而然地),而在自然而然的情况下(供应了其他供应)。但是,温度变化对球体在强迫和自然对流中的阻力的影响是显着的。

Fully resolved simulations are used to quantify the effects of heat transfer in the presence of buoyancy on the drag of a spatially fixed heated spherical particle at low Reynolds numbers ($Re$) in the range $10^{-3} \le Re \le 10$ in a variable property fluid. The amount of heat addition from the sphere encompasses both, the heating regime where the Boussinesq approximation holds and the regime where it breaks down. The particle is assumed to have a low Biot number which means that the particle is uniformly at the same temperature and has no internal temperature gradients. Scaling buoyancy with inertial and viscous forces yields two related non-dimensional quantities, called Buoyancy Induced Viscous Reynolds Number ($Re_{BV}$) and Buoyancy Induced Inertial Reynolds Number ($Re_{BI}$). For ideal gases, $Re_{BV}$ is analogous to the Grashof number ($Gr$). No assumptions are made on the magnitude of $Re_{BI}$ (or equivalently $Re_{BV}$). The effects of the orientation of gravity relative to the free-stream velocity are examined. Large deviations in the value of the drag coefficient are observed when the Froude number ($Fr$) decreases and/or the temperature of the sphere increases. Under appropriate constraints on $Re_{BI}$ and $Re$, the total drag on a heated sphere in a low $Re$ flow in the presence of buoyancy (mixed convection) is shown to be, within 10% error, the linear superposition of the drag computed in two canonical setups: one being the drag on a steadily moving heated sphere in the absence of buoyancy (forced convection) and the other being natural convection. However, the effect of temperature variation on the drag of a sphere in both, forced and natural convection, is significant.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源