论文标题

CNNPruner:带视觉分析的修剪卷积神经网络

CNNPruner: Pruning Convolutional Neural Networks with Visual Analytics

论文作者

Li, Guan, Wang, Junpeng, Shen, Han-Wei, Chen, Kaixin, Shan, Guihua, Lu, Zhonghua

论文摘要

卷积神经网络(CNN)在许多计算机视觉任务中表现出非常出色的表现。但是,CNN模型的尺寸不断增加,可防止它们被广泛部署到具有有限的计算资源(例如移动/嵌入式设备)的设备上。模型修剪的新兴主题通过删除不太重要的神经元并微调修剪的网络来最大程度地减少准确性损失来解决这个问题。然而,现有的自动修剪解决方案通常依赖于修剪标准的数值阈值,因此缺乏在模型大小和准确性之间最佳平衡权衡的灵活性。此外,神经元修剪和模型微调阶段之间的复杂相互作用使此过程不透明,因此很难优化。在本文中,我们通过视觉分析方法(名为CNNPruner)解决了这些挑战。它认为卷积过滤器通过不稳定性和灵敏度的重要性,并允许用户根据所需的目标在模型大小或准确性上进行交互性创建修剪计划。此外,CNNPruner集成了最先进的过滤器可视化技术,以帮助用户了解不同过滤器扮演的角色并完善其修剪计划。通过对具有现实世界大小的CNN的全面案例研究,我们验证了CNNPruner的有效性。

Convolutional neural networks (CNNs) have demonstrated extraordinarily good performance in many computer vision tasks. The increasing size of CNN models, however, prevents them from being widely deployed to devices with limited computational resources, e.g., mobile/embedded devices. The emerging topic of model pruning strives to address this problem by removing less important neurons and fine-tuning the pruned networks to minimize the accuracy loss. Nevertheless, existing automated pruning solutions often rely on a numerical threshold of the pruning criteria, lacking the flexibility to optimally balance the trade-off between model size and accuracy. Moreover, the complicated interplay between the stages of neuron pruning and model fine-tuning makes this process opaque, and therefore becomes difficult to optimize. In this paper, we address these challenges through a visual analytics approach, named CNNPruner. It considers the importance of convolutional filters through both instability and sensitivity, and allows users to interactively create pruning plans according to a desired goal on model size or accuracy. Also, CNNPruner integrates state-of-the-art filter visualization techniques to help users understand the roles that different filters played and refine their pruning plans. Through comprehensive case studies on CNNs with real-world sizes, we validate the effectiveness of CNNPruner.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源