论文标题

多项式在除法环上的固定点

Fixed Points of Polynomials over Division Rings

论文作者

Chapman, Adam, Vishkautsan, Solomon

论文摘要

我们研究了分区戒指$ d $的标准(或左)多项式$ f(x)$的离散动力。我们将它们的固定点定义为d $中的点$λ\ in \ f^{\ circ n}(λ)=λ$的任何$ n \ in \ mathbb {n} $,其中$ f^{\ circ n}(x)(x)$由$ f^{\ circ n} $ circ n}(x)(x)(x)(x)(x)(x)(x)(x)(x)(x)( $ f^{\ circ 1}(x)= f(x)$。周期点类似地定义。我们证明,$λ$是$ f(x)$的固定点,并且仅当$ f(λ)=λ$的固定点可以使用多项式方程理论的已知结果得出结论,即任何$ M \ geq 2 $的多项式$ m \ geq 2 $最多都有$ m $ m $ M $ CONJUGACY CONJUGACY类别的固定点。我们还考虑了任意的周期性观点,并表明,通常它们的行为不像交换案例那样。我们提供了足够的条件,可以按预期进行周期性的行为。

We study the discrete dynamics of standard (or left) polynomials $f(x)$ over division rings $D$. We define their fixed points to be the points $λ\in D$ for which $f^{\circ n}(λ)=λ$ for any $n \in \mathbb{N}$, where $f^{\circ n}(x)$ is defined recursively by $f^{\circ n}(x)=f(f^{\circ (n-1)}(x))$ and $f^{\circ 1}(x)=f(x)$. Periodic points are similarly defined. We prove that $λ$ is a fixed point of $f(x)$ if and only if $f(λ)=λ$, which enables the use of known results from the theory of polynomial equations, to conclude that any polynomial of degree $m \geq 2$ has at most $m$ conjugacy classes of fixed points. We also consider arbitrary periodic points, and show that in general, they do not behave as in the commutative case. We provide a sufficient condition for periodic points to behave as expected.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源