论文标题
深度神经网络的有条件自动化通道修剪
Conditional Automated Channel Pruning for Deep Neural Networks
论文作者
论文摘要
模型压缩旨在减少深网的冗余以获得紧凑的模型。最近,通道修剪已成为在资源约束设备上部署深层模型的主要压缩方法之一。大多数通道修剪方法通常对模型的所有层都使用固定的压缩率,但是,这可能不是最佳的。为了解决此问题,给定整个模型的目标压缩率,可以搜索每一层的最佳压缩率。然而,这些方法对特定的目标压缩率执行通道修剪。当我们考虑多个压缩率时,他们必须多次重复通道修剪过程,这是非常低效但不必要的。为了解决此问题,我们提出了一种有条件的自动化通道修剪(CACP)方法,以通过单个通道修剪过程获得具有不同压缩率的压缩模型。为此,我们开发了一个条件模型,该模型将任意压缩率作为输入并输出相应的压缩模型。在实验中,具有不同压缩速率的最终模型始终优于通过现有方法压缩的模型,该模型具有每个目标压缩率的通道修剪过程。
Model compression aims to reduce the redundancy of deep networks to obtain compact models. Recently, channel pruning has become one of the predominant compression methods to deploy deep models on resource-constrained devices. Most channel pruning methods often use a fixed compression rate for all the layers of the model, which, however, may not be optimal. To address this issue, given a target compression rate for the whole model, one can search for the optimal compression rate for each layer. Nevertheless, these methods perform channel pruning for a specific target compression rate. When we consider multiple compression rates, they have to repeat the channel pruning process multiple times, which is very inefficient yet unnecessary. To address this issue, we propose a Conditional Automated Channel Pruning(CACP) method to obtain the compressed models with different compression rates through single channel pruning process. To this end, we develop a conditional model that takes an arbitrary compression rate as input and outputs the corresponding compressed model. In the experiments, the resultant models with different compression rates consistently outperform the models compressed by existing methods with a channel pruning process for each target compression rate.