论文标题

正弦山脉的最大和耦合

Maximum and coupling of the sine-Gordon field

论文作者

Bauerschmidt, Roland, Hofstetter, Michael

论文摘要

对于$ 0 <β<6π$,我们证明了二维圆环上$ε$的连续正弦 - 戈登场的中心最大值分布收敛到随机移动的gumbel分布,为$ε\ to $ε\至0 $。我们的证明依赖于正弦波场所有尺度上的强耦合与高斯自由场,独立感兴趣的耦合以及现有方法的扩展,以最大程度地提高晶格高斯自由场。

For $0<β<6π$, we prove that the distribution of the centred maximum of the $ε$-regularised continuum sine-Gordon field on the two-dimensional torus converges to a randomly shifted Gumbel distribution as $ε\to 0$. Our proof relies on a strong coupling at all scales of the sine-Gordon field with the Gaussian free field, of independent interest, and extensions of existing methods for the maximum of the lattice Gaussian free field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源