论文标题

使用深度学习的增强边缘选择,以在无人驾驶汽车中进行强大的监视

Reinforced Edge Selection using Deep Learning for Robust Surveillance in Unmanned Aerial Vehicles

论文作者

Park, Soohyun, Park, Jeman, Mohaisen, David, Kim, Joongheon

论文摘要

在本文中,我们提出了一种新型的深Q-Network(DQN)的边缘选择算法,专为无人机(UAV)网络的实时监视而设计。提出的算法是在考虑到延迟,能量和溢出作为优化的考虑方面设计的,以确保实时属性,同时为其他与环境相关的参数达到平衡。通过基于模拟的性能评估来验证所提出算法的优点。

In this paper, we propose a novel deep Q-network (DQN)-based edge selection algorithm designed specifically for real-time surveillance in unmanned aerial vehicle (UAV) networks. The proposed algorithm is designed under the consideration of delay, energy, and overflow as optimizations to ensure real-time properties while striking a balance for other environment-related parameters. The merit of the proposed algorithm is verified via simulation-based performance evaluation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源