论文标题

一项资源管理调查,用于内存和临近记忆处理架构

A Survey of Resource Management for Processing-in-Memory and Near-Memory Processing Architectures

论文作者

Khan, Kamil, Pasricha, Sudeep, Kim, Ryan Gary

论文摘要

由于涉及新兴深度学习和大数据应用的数据量,与数据移动相关的操作迅速成为瓶颈。以数据为中心的计算(DCC)通过内存处理(PIM)和近内存处理(NMP)范式启用,旨在通过将计算更接近数据来加速这些类型的应用程序。在过去的几年中,研究人员提出了各种记忆体系结构,以使DCC系统(例如3D堆叠的记忆中的逻辑层或DRAM中的基于收费共享的钻头操作)。但是,特定于应用程序的内存访问模式,功率和热关注,内存技术限制以及不一致的性能使DCC系统中计算的卸载变得复杂。因此,设计用于计算卸载的智能资源管理技术对于利用这种新范式提供的潜力至关重要。在本文中,我们调查了管理基于PIM和NMP的DCC系统的主要趋势,并审查了系统设计师对此类系统采用的资源管理技术的景观。此外,我们讨论了DCC管理中的未来挑战和机遇。

Due to amount of data involved in emerging deep learning and big data applications, operations related to data movement have quickly become the bottleneck. Data-centric computing (DCC), as enabled by processing-in-memory (PIM) and near-memory processing (NMP) paradigms, aims to accelerate these types of applications by moving the computation closer to the data. Over the past few years, researchers have proposed various memory architectures that enable DCC systems, such as logic layers in 3D stacked memories or charge sharing based bitwise operations in DRAM. However, application-specific memory access patterns, power and thermal concerns, memory technology limitations, and inconsistent performance gains complicate the offloading of computation in DCC systems. Therefore, designing intelligent resource management techniques for computation offloading is vital for leveraging the potential offered by this new paradigm. In this article, we survey the major trends in managing PIM and NMP-based DCC systems and provide a review of the landscape of resource management techniques employed by system designers for such systems. Additionally, we discuss the future challenges and opportunities in DCC management.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源