论文标题
在有效估计最小肠
On the Efficient Estimation of Min-Entropy
论文作者
论文摘要
最小渗透性是一种广泛使用的度量,用于量化加密应用中生成的随机数的随机性。它衡量了猜测最可能输出的困难。一个重要的最小渗透估计器是NIST特殊出版物(SP)800-90B的压缩估计器,该估计量依赖于Maurer的通用测试。在本文中,我们提出了两种最小的估计量,以利用莫拉勒测试的两种变体来提高计算复杂性和估计精度:Coron的测试(用于香农熵)和Kim的测试(用于Renyi Entrypy)。首先,我们根据Coron的测试提出了一个最小的估计器。在保持估计准确性的同时,它比压缩估计器更有效。次提出的估计量依赖于KIM的测试,该测试计算了Renyi熵。该估计器提高了估计精度以及计算复杂性。我们在分析上表征了偏见 - 差异的权衡,这取决于Renyi熵的顺序。通过考虑到这一权衡,我们观察到,两个顺序是适当的分配,并重点介绍了基于碰撞熵(即第二顺序的Renyi熵)的最小透镜估计。碰撞熵的最小透气估计可以用封闭形式的解决方案来描述,而压缩估计器和基于Coron测试的建议估计量都没有封闭形式的溶液。通过利用封闭形式的解决方案,我们还提出了一个轻巧的估计器,该估计器以在线方式处理数据样本。数值评估表明,第一个提出的估计器的准确性与压缩估计器相同,计算较少。基于碰撞熵的拟议估计器甚至可以提高准确性并降低计算复杂性。
The min-entropy is a widely used metric to quantify the randomness of generated random numbers in cryptographic applications; it measures the difficulty of guessing the most likely output. An important min-entropy estimator is the compression estimator of NIST Special Publication (SP) 800-90B, which relies on Maurer's universal test. In this paper, we propose two kinds of min-entropy estimators to improve computational complexity and estimation accuracy by leveraging two variations of Maurer's test: Coron's test (for Shannon entropy) and Kim's test (for Renyi entropy). First, we propose a min-entropy estimator based on Coron's test. It is computationally more efficient than the compression estimator while maintaining the estimation accuracy. The secondly proposed estimator relies on Kim's test that computes the Renyi entropy. This estimator improves estimation accuracy as well as computational complexity. We analytically characterize the bias-variance tradeoff, which depends on the order of Renyi entropy. By taking into account this tradeoff, we observe that the order of two is a proper assignment and focus on the min-entropy estimation based on the collision entropy (i.e., Renyi entropy of order two). The min-entropy estimation from the collision entropy can be described by a closed-form solution, whereas both the compression estimator and the proposed estimator based on Coron's test do not have closed-form solutions. By leveraging the closed-form solution, we also propose a lightweight estimator that processes data samples in an online manner. Numerical evaluations demonstrate that the first proposed estimator achieves the same accuracy as the compression estimator with much less computation. The proposed estimator based on the collision entropy can even improve the accuracy and reduce the computational complexity.