论文标题

ES攻击:模型窃取没有数据障碍的深度神经网络

ES Attack: Model Stealing against Deep Neural Networks without Data Hurdles

论文作者

Yuan, Xiaoyong, Ding, Leah, Zhang, Lan, Li, Xiaolin, Wu, Dapeng

论文摘要

深度神经网络(DNN)已成为各种商业化机器学习服务的重要组成部分,例如机器学习为服务(MLAAS)。最近的研究表明,机器学习服务面临着严重的隐私威胁 - MLAAS提供者拥有的训练有素的DNN可以通过公共API偷走,即模型窃取攻击。但是,大多数现有作品都低估了此类攻击的影响,在这种攻击中,成功的攻击必须获得有关受害者DNN的机密培训数据或辅助数据。在本文中,我们提出了ES Attack,这是一种新颖的模型窃取攻击而没有任何数据障碍。通过使用启发式生成的合成数据,ES攻击迭代训练替代模型,并最终获得了受害者DNN的功能等效副本。实验结果揭示了ES攻击的严重性:I)ES攻击成功地窃取了受害者模型而没有数据障碍,并且在模型准确性方面,使用辅助数据超过了大多数现有的模型窃取攻击; ii)大多数对策在捍卫ES攻击方面无效; iii)ES攻击有助于依靠被盗模型的进一步攻击。

Deep neural networks (DNNs) have become the essential components for various commercialized machine learning services, such as Machine Learning as a Service (MLaaS). Recent studies show that machine learning services face severe privacy threats - well-trained DNNs owned by MLaaS providers can be stolen through public APIs, namely model stealing attacks. However, most existing works undervalued the impact of such attacks, where a successful attack has to acquire confidential training data or auxiliary data regarding the victim DNN. In this paper, we propose ES Attack, a novel model stealing attack without any data hurdles. By using heuristically generated synthetic data, ES Attack iteratively trains a substitute model and eventually achieves a functionally equivalent copy of the victim DNN. The experimental results reveal the severity of ES Attack: i) ES Attack successfully steals the victim model without data hurdles, and ES Attack even outperforms most existing model stealing attacks using auxiliary data in terms of model accuracy; ii) most countermeasures are ineffective in defending ES Attack; iii) ES Attack facilitates further attacks relying on the stolen model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源