论文标题

通过每日重新配置对分销网络的多目标优化

Multi-Objective Optimization of Distribution Networks via Daily Reconfiguration

论文作者

Razavi, Seyed-Mohammad, Momeni, Hamid-Reza, Haghifam, Mahmoud-Reza, Bolouki, Sadegh

论文摘要

本文提出了一种使用分布式网络重新配置(DNR),提高了改善主动分销网络(ADN)(ADN)日常性能(ADN)的全面方法。这项工作中的优化目标可以描述为(i)减少主动损失,(ii)改善电压轮廓,(iii)提高网络可靠性,以及(iv)最小化分配网络操作成本。建议的方法考虑了可再生资源失败的可能性,鉴于在每天开始时从其初始状态收集的信息解决了优化问题。此外,根据过去的历史数据以及可再生能源(例如光伏(PV))的性能的影响,根据马尔可夫模型确定了太阳辐射变化。由于重新配置方案的数量很高,因此使用基于概率距离方法的随机DNR(SDNR)来缩小场景集。在最后阶段,引入了改进的乌鸦搜索算法(ICSA)以找到最佳方案。作为案例研究,对IEEE 33-BUS径向分布系统进行了建议的方法的有效性。

This paper presents a comprehensive approach to improve the daily performance of an active distribution network (ADN), which includes renewable resources and responsive load (RL), using distributed network reconfiguration (DNR). Optimization objectives in this work can be described as (i) reducing active losses, (ii) improving the voltage profile, (iii) improving the network reliability, and (iv) minimizing distribution network operation costs. The suggested approach takes into account the probability of renewable resource failure, given the information collected from their initial state at the beginning of every day, in solving the optimization problem. Furthermore, solar radiation variations are estimated based on past historical data and the impact of the performance of renewable sources such as photovoltaic (PV) is determined hourly based on the Markov model. Since the number of reconfiguration scenarios is very high, stochastic DNR (SDNR) based on the probability distance method is employed to shrink the scenarios set. At the final stage, an improved crow search algorithm (ICSA) is introduced to find the optimal scenario. The effectiveness of the suggested method is verified for the IEEE 33-bus radial distribution system as a case study.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源