论文标题

分数冲动差异系统的普遍Mittag-Leffler稳定性

Generalized Mittag-Leffler stability of fractional impulsive differential system

论文作者

Raghavan, Divya, Nagarajan, Sukavanam, Zhai, Chengbo

论文摘要

本文建立了具有冲动条件的脉冲Hilfer分数微分方程的温和溶液的整体表示,并在冲动点上波动下限。此外,本文提供了足够的条件,可以使一类Hilfer Order的一类冲动分数差分系统的普遍稳定性稳定。该分析贯穿了瞬时和非瞬态冲动条件。该理论利用连续的Lyapunov函数来确定稳定性条件。提供了一个示例,以研究针对非持续冲动条件的可变下限的系统解决方案。

This paper establishes integral representations of mild solutions of impulsive Hilfer fractional differential equations with impulsive conditions and fluctuating lower bounds at impulsive points. Further, the paper provides sufficient conditions for generalized Mittag-Leffler stability of a class of impulsive fractional differential systems with Hilfer order. The analysis extends through both, instantaneous and non-instantaneous impulsive conditions. The theory utilizes continuous Lyapunov functions, to ascertain the stability conditions. An example is provided to study the solution of the system with a changeable lower bound for the non-instantaneous impulsive conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源