论文标题
在电容性强类型不平等和相关的电容性估计上
On a capacitary strong type inequality and related capacitary estimates
论文作者
论文摘要
我们建立了马兹亚型的电容性不平等,该不平等问题解决了大卫·R·亚当斯(David R. Adams)的猜想的特殊情况。结果,我们获得了与Bessel或Riesz能力相关的Choquet积分的几个同等规范。这使我们能够在sublinear设置中获得耐铁木的最大功能的界限。
We establish a Maz'ya type capacitary inequality which resolves a special case of a conjecture by David R. Adams. As a consequence, we obtain several equivalent norms for Choquet integrals associated to Bessel or Riesz capacities. This enables us to obtain bounds for the Hardy-Littlewood maximal function in a sublinear setting.