论文标题
虚拟弯曲方法计算弯曲刚度,鞍形模量和薄流体膜的自发曲率
Virtual bending method to calculate bending rigidity, saddle-splay modulus, and spontaneous curvature of thin fluid membrane
论文作者
论文摘要
提出了一种计算弯曲刚度$κ$,鞍模模量$ \barκ$和自发曲率$ C_0 $ C_0 $的方法。对于平坦的膜,计算了弯曲变形为圆柱形和球形形状的虚拟工作。与现有的压力促进方法不同,此方法不需要力分解。变形的第一个衍生物给出$κC_0$,是应力曲线第一瞬间的离散形式。第二个导数给出$κ$和$ \barκ$,并包括第一衍生物的差异项,这些衍生物条款在压力profile方法中未考虑。研究了该方法的无溶剂无网膜模型和耗散粒子 - 动力学两珠两亲性分子模型。可以得出结论,可以准确计算薄膜的$κ$和$ \barκ$,而对于厚膜或具有显式溶剂的膜,进一步的扩展以包括估计的体积 - 拖延效应,以进行准确的估计。可以使用当前方法中的参数依赖性评估体积 - 裂开效应的幅度。
A method to calculate the bending rigidity $κ$, saddle-splay modulus $\barκ$, and spontaneous curvature $C_0$ of a fluid membrane is proposed. Virtual work for the bending deformations into cylindrical and spherical shapes is calculated for a flat membrane. This method does not require a force decomposition, unlike the existing stress-profile method. The first derivative of the deformation gives $κC_0$ and is a discrete form of the first moment of the stress profile. The second derivatives give $κ$ and $\barκ$, and include the variance terms of the first derivatives, which are not accounted for in the stress-profile method. This method is examined for a solvent-free meshless membrane model and a dissipative-particle-dynamics two-bead amphiphilic molecular model. It is concluded that $κ$ and $\barκ$ of a thin membrane can be accurately calculated, whereas for a thick membrane or one with an explicit solvent, a further extension to include the volume-fluctuation effects is required for an accurate estimation. The amplitude of the volume-fluctuation effects can be evaluated using the parameter dependence in the present method.