论文标题

在带有规律性假设的Kakeya地图上

On Kakeya maps with regularity assumptions

论文作者

Fu, Yuqiu, Gan, Shengwen

论文摘要

在$ \ mathbb r^n $中,我们使用Kakeya Maps参数化Kakeya集。 Kakeya地图被定义为$$ $ ϕ:b^{n-1}(0,1)\ times [0,1] \ rightarrow \ Mathbb {r}^{n},(v,t)\ mapsto(c(v) \ mathbb {r}^{n-1} $。关联的Kakeya集定义为$ K:= \ text {im}(ϕ)。 $ 我们表明,如果以下任何一个条件是正确的,那么Kakeya set $ k $具有积极的措施。 (1)$ c $是连续的,$ c | _ {s^{n-2}}} \在c^α(s^{n-2})$ in c^α(s^{n-2})$ for某些$α> \ frac {(n-2)n} {(n-1){(n-1)^2} $, (2)$ c $是连续的,$ c | _ {s^{n-2}} \ in W^{1,p}(s^{n-2})$对于某些$ p> n-2 $。

In $\mathbb R^n$, we parametrize Kakeya sets using Kakeya maps. A Kakeya map is defined to be a map $$ϕ:B^{n-1}(0,1)\times [0,1]\rightarrow \mathbb{R}^{n}, (v,t)\mapsto (c(v)+tv,t),$$ where $ c:B^{n-1}(0,1)\rightarrow \mathbb{R}^{n-1}$. The associated Kakeya set is defined to be $ K:=\text{Im} (ϕ). $ We show that the Kakeya set $K$ has positive measure if either one of the following conditions is true. (1) $c$ is continuous and $c|_{S^{n-2}}\in C^α(S^{n-2})$ for some $α>\frac{(n-2)n}{(n-1)^2}$, (2) $c$ is continuous and $c|_{S^{n-2}}\in W^{1,p}(S^{n-2})$ for some $p>n-2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源