论文标题

基于整体网格融合的停止线估计

Holistic Grid Fusion Based Stop Line Estimation

论文作者

Xu, Runsheng, Tafazzoli, Faezeh, Zhang, Li, Rehfeld, Timo, Krehl, Gunther, Seal, Arunava

论文摘要

交点方案在自动驾驶和驾驶援助系统中提供了最复杂的交通情况。知道在交叉路口中提前停止的地方是控制车辆纵向速度的重要参数。文献中的大多数现有方法仅使用摄像机来检测停止线,这通常在检测范围方面不够。为了解决此问题,我们提出了一种利用融合的多感官数据(包括立体声摄像机和激光镜头)的方法,作为输入,并利用精心设计的卷积神经网络体系结构来检测停止线。我们的实验表明,与仅相机数据相比,所提出的方法可以改善检测范围,在沉重的闭塞下工作,而无需明确观察地面标记,能够预测所有车道的停止线,并允许在高达50米的距离处进行检测。

Intersection scenarios provide the most complex traffic situations in Autonomous Driving and Driving Assistance Systems. Knowing where to stop in advance in an intersection is an essential parameter in controlling the longitudinal velocity of the vehicle. Most of the existing methods in literature solely use cameras to detect stop lines, which is typically not sufficient in terms of detection range. To address this issue, we propose a method that takes advantage of fused multi-sensory data including stereo camera and lidar as input and utilizes a carefully designed convolutional neural network architecture to detect stop lines. Our experiments show that the proposed approach can improve detection range compared to camera data alone, works under heavy occlusion without observing the ground markings explicitly, is able to predict stop lines for all lanes and allows detection at a distance up to 50 meters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源