论文标题

一种基于语音的声学和语言特征,一种机器学习方法来检测美国退伍军人自杀念头

A Machine Learning Approach to Detect Suicidal Ideation in US Veterans Based on Acoustic and Linguistic Features of Speech

论文作者

Sourirajan, Vaibhav, Belouali, Anas, Dutton, Mary Ann, Reinhard, Matthew, Pathak, Jyotishman

论文摘要

防止退伍军人自杀是国家优先事项。美国退伍军人事务部(VA)收集,分析和发布数据,以告知预防自杀策略。当前检测自杀意念的方法主要取决于不足和耗时的患者自我报告。在这项研究中,我们的目标是使用机器学习(ML)算法从个人语音的声学和语言特征中自杀自杀意念检测。使用从华盛顿特区VA医疗中心参加大型介入的海湾战争疾病研究的退伍军人的语音数据,我们对实现目标的不同ML方法的性能进行了评估。通过将经典的ML和深度学习模型拟合到数据集,我们确定了对于每个功能集最有效的算法。在经典的机器学习算法中,接受过声学特征的支持向量机(SVM)在对自杀退伍军人进行分类方面表现最好。在深度学习方法中,接受语言特征训练的卷积神经网络(CNN)表现最好。我们的研究表明,机器学习管道中的语音分析是检测退伍军人自杀性的有前途的方法。

Preventing Veteran suicide is a national priority. The US Department of Veterans Affairs (VA) collects, analyzes, and publishes data to inform suicide prevention strategies. Current approaches for detecting suicidal ideation mostly rely on patient self report which are inadequate and time consuming. In this research study, our goal was to automate suicidal ideation detection from acoustic and linguistic features of an individual's speech using machine learning (ML) algorithms. Using voice data collected from Veterans enrolled in a large interventional study on Gulf War Illness at the Washington DC VA Medical Center, we conducted an evaluation of the performance of different ML approaches in achieving our objective. By fitting both classical ML and deep learning models to the dataset, we identified the algorithms that were most effective for each feature set. Among classical machine learning algorithms, the Support Vector Machine (SVM) trained on acoustic features performed best in classifying suicidal Veterans. Among deep learning methods, the Convolutional Neural Network (CNN) trained on the linguistic features performed best. Our study shows that speech analysis in a machine learning pipeline is a promising approach for detecting suicidality among Veterans.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源