论文标题
F稳定的辅助表示和F注射率的变形
F-stable secondary representations and deformation of F-injectivity
论文作者
论文摘要
我们证明,formation formation for formation for local环$(r,\ mathfrak {m})$允许在自然弗罗贝尼乌斯动作下稳定的$ h^i _ {\ mathfrak {\ mathfrak {\ mathfrak {\ mathfrak {m}}(r)$。结果,当$(r,\ m athfrak {m})$是依次是cohen-macaulay时(或更一般而言,当所有局部共同体学模块$ h^i _ _ {\ mathfrak {\ mathfrak {m mathfrak {m}}(r)$都没有嵌入的附件)时。如果$ r/\ mathfrak {m} $是完美的,或者$ r $是$ \ mathbb {n} $ - 分级。
We prove that deformation of F-injectivity holds for local rings $(R,\mathfrak{m})$ that admit secondary representations of $H^i_{\mathfrak{m}}(R)$ which are stable under the natural Frobenius action. As a consequence, F-injectivity deforms when $(R,\mathfrak{m})$ is sequentially Cohen-Macaulay (or more generally when all the local cohomology modules $H^i_{\mathfrak{m}}(R)$ have no embedded attached primes). We obtain some additional cases if $R/\mathfrak{m}$ is perfect or if $R$ is $\mathbb{N}$-graded.