论文标题
像专业人士一样轻松地生成明喻:一种simile生成的样式转移方法
Generating similes effortlessly like a Pro: A Style Transfer Approach for Simile Generation
论文作者
论文摘要
从诗歌到故事,文学上的比喻是人类想象力和交流的症结所在。诸如明喻之类的象征性语言超出了平淡的表达方式,可以为读者提供新的见解和灵感。在本文中,我们解决了比喻生成问题。生成明喻需要正确理解,以有效地映射两个概念之间的属性。为此,我们首先提出了一种使用结构化的常识知识,将大量从reddit收集到其字面意义的比喻来自动构建平行语料库。然后,我们建议在字面的simile对上对序列模型Bart〜Cite {Lewis2019bart}进行微调序列,以获得通用性,以便我们可以在字面的句子下生成新颖的比喻。实验表明,我们的方法会产生$ 88 \%$新颖的明喻,而这些明喻不会与培训数据共享属性。人类对一组文字陈述的评估表明,我们的模型比两位文学专家\ textit {37 \%} \ footnote {我们平均为2个人的平均32.6 \%和41.3 \%。 ,三个基线的63 \%和68 \%。输入:毫不费力地生成明喻,输出:生成similes \ textit {像pro}。}我们还展示了如何用来自我们最佳模型的机器生成的故事中最佳模型替换字面句子的句子可以提高回忆性,并导致人类法官更好地接受。
Literary tropes, from poetry to stories, are at the crux of human imagination and communication. Figurative language such as a simile go beyond plain expressions to give readers new insights and inspirations. In this paper, we tackle the problem of simile generation. Generating a simile requires proper understanding for effective mapping of properties between two concepts. To this end, we first propose a method to automatically construct a parallel corpus by transforming a large number of similes collected from Reddit to their literal counterpart using structured common sense knowledge. We then propose to fine-tune a pretrained sequence to sequence model, BART~\cite{lewis2019bart}, on the literal-simile pairs to gain generalizability, so that we can generate novel similes given a literal sentence. Experiments show that our approach generates $88\%$ novel similes that do not share properties with the training data. Human evaluation on an independent set of literal statements shows that our model generates similes better than two literary experts \textit{37\%}\footnote{We average 32.6\% and 41.3\% for 2 humans.} of the times, and three baseline systems including a recent metaphor generation model \textit{71\%}\footnote{We average 82\% ,63\% and 68\% for three baselines.} of the times when compared pairwise.\footnote{The simile in the title is generated by our best model. Input: Generating similes effortlessly, output: Generating similes \textit{like a Pro}.} We also show how replacing literal sentences with similes from our best model in machine generated stories improves evocativeness and leads to better acceptance by human judges.