论文标题
关于非线性椭圆偏微分方程的解决方案的分析性
On the analyticity of solutions to non-linear elliptic partial differential equations
论文作者
论文摘要
我们简单地证明了一个事实,即$ c^\ infty $ $ $ $ $ elliptic eelliptic second seconder $$的解决方案 ϕ(x,u,d u,d^2 u)= 0 $$是分析性的。遵循加藤的想法,证明使用了适当加权衍生品的归纳估计。然后,我们使用Cauchy的Malevor方法来结束证明}。
We give an easy proof of the fact that $C^\infty$ solutions to non-linear elliptic equations of second order $$ ϕ(x, u, D u, D^2 u)=0 $$ are analytic. Following ideas of Kato, the proof uses an inductive estimate for suitable weighted derivatives. We then conclude the proof using Cauchy's method of majorants}.