论文标题

Deltagan:使用特定的三角

DeltaGAN: Towards Diverse Few-shot Image Generation with Sample-Specific Delta

论文作者

Hong, Yan, Niu, Li, Zhang, Jianfu, Liang, Jing, Zhang, Liqing

论文摘要

学习为仅基于几个图像(称为少数图像产生的少数图像)生成新类别的新图像,引起了研究的兴趣。几项最先进的作品取得了令人印象深刻的结果,但多样性仍然有限。在这项工作中,我们提出了一个新颖的Delta生成对抗网络(Deltagan),该网络由重建子网和一代子网组成。重建子网捕获了类别内转换,即“ delta”,在相同类别对之间。生成子网为输入图像生成了特定于样本的“ delta”,该输入图像与此输入图像结合使用,以在同一类别中生成新图像。此外,对抗性的三角洲匹配损失旨在将上述两个子网链接在一起。在五个少量图像数据集上进行了广泛的实验证明了我们提出的方法的有效性。

Learning to generate new images for a novel category based on only a few images, named as few-shot image generation, has attracted increasing research interest. Several state-of-the-art works have yielded impressive results, but the diversity is still limited. In this work, we propose a novel Delta Generative Adversarial Network (DeltaGAN), which consists of a reconstruction subnetwork and a generation subnetwork. The reconstruction subnetwork captures intra-category transformation, i.e., "delta", between same-category pairs. The generation subnetwork generates sample-specific "delta" for an input image, which is combined with this input image to generate a new image within the same category. Besides, an adversarial delta matching loss is designed to link the above two subnetworks together. Extensive experiments on five few-shot image datasets demonstrate the effectiveness of our proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源