论文标题
重新培训国家违反了KCB的不平等和最大背景性的必要条件
Retrit States Violating the KCBS Inequality and Necessary Conditions for Maximal Contextuality
论文作者
论文摘要
由于观察到非上下文和局部隐藏变量理论所暗示的不平等现象的行为,因此必须确定(非)上下文状态的集合。沿着这个方向,应该确定观察到量子上下文性的条件。确定如何找到最大的上下文Qutrits也很重要。在这项工作中,我们重新访问了Klyachko-Can-Binicioğlu-Shumovsky(KCBS)场景,在那里我们观察到了五衡量状态依赖性的上下文。我们研究了KCBS Pentagram的可能对称性,即Qutrit-System的上下文特征的保护。为此,在Z轴周围旋转了包括五个环状测量值的KCBS操作员。然后,我们检查一组旋转角度,以确定Spin-1操作员特征状态的上下文性和非上下文区域以进行任意旋转。我们为具有自旋值+1和-1的本征态的均匀线性组合执行相同的操作。更一般而言,我们在三维希尔伯特空间的实际子组上工作,以确定物理欧几里得空间中某些旋转的(非)上下文状态的集合$ \ mathbb {e}^3 $。最后,我们显示了有关Euler旋转角度的数据,这些数据是最大的上下文检索(真实希尔伯特空间的Qutrits),并通过欧拉角和Qutrit状态在用球形坐标参数的参数中得出数学关系。
Since violations of inequalities implied by non-contextual and local hidden variable theories are observed, it is essential to determine the set of (non-)contextual states. Along this direction, one should determine the conditions under which quantum contextuality is observed. It is also important to determine how one can find maximally contextual qutrits. In this work, we revisit the Klyachko-Can-Binicioğlu-Shumovsky (KCBS) scenario where we observe a five-measurement state-dependent contextuality. We investigate possible symmetries of the KCBS pentagram, i.e., the conservation of the contextual characteristic of a qutrit-system. For this purpose, the KCBS operator including five cyclic measurements is rotated around the Z-axis. We then check a set of rotation angles to determine the contextuality and non-contextuality regions for the eigenstates of the spin-1 operator for an arbitrary rotation. We perform the same operation for the homogeneous linear combination of the eigenstates with spin values +1 and -1. More generally, we work on the real subgroup of the three dimensional Hilbert space to determine the set of (non-)contextual states under certain rotations in the physical Euclidean space $\mathbb{E}^3$. Finally, we show data on Euler rotation angles for which maximally contextual retrits (qutrits of the real Hilbert space) are found, and derive mathematical relations through data analysis between Euler angles and qutrit states parameterized with spherical coordinates.