论文标题

总结博士:通过利用本地结构来对医学对话进行全球汇总

Dr. Summarize: Global Summarization of Medical Dialogue by Exploiting Local Structures

论文作者

Joshi, Anirudh, Katariya, Namit, Amatriain, Xavier, Kannan, Anitha

论文摘要

了解患者和医生之间的医学对话会提出独特的自然理解挑战,因为它将标准开放式对话的要素与需要专业知识和医学知识的非常域的特定元素结合在一起。医疗对话的摘要是医学对话理解的一个特别重要的方面,因为它解决了医学实践中非常真实的需求:捕获医疗相遇的最重要方面,以便它们可以用于医疗决策和随后的后续行动。 在本文中,我们提出了一种新颖的医学对话摘要方法,该方法利用了在收集患者的病史时创建的独特而独立的本地结构。我们的方法是指针生成器网络的一种变体,在该网络中,我们对发电机分布介绍惩罚,并明确地模型否定。该模型还捕获了医学对话的重要特性,例如来自标准化的医学本体学的医学知识比明确引入这些概念时更好。通过医生的评估,我们表明我们的方法是基线指针发电机模型的摘要数量的两倍,并捕获了80%的对话中的大多数或全部信息,这使其成为医疗专家的昂贵手动摘要的现实替代方法。

Understanding a medical conversation between a patient and a physician poses a unique natural language understanding challenge since it combines elements of standard open ended conversation with very domain specific elements that require expertise and medical knowledge. Summarization of medical conversations is a particularly important aspect of medical conversation understanding since it addresses a very real need in medical practice: capturing the most important aspects of a medical encounter so that they can be used for medical decision making and subsequent follow ups. In this paper we present a novel approach to medical conversation summarization that leverages the unique and independent local structures created when gathering a patient's medical history. Our approach is a variation of the pointer generator network where we introduce a penalty on the generator distribution, and we explicitly model negations. The model also captures important properties of medical conversations such as medical knowledge coming from standardized medical ontologies better than when those concepts are introduced explicitly. Through evaluation by doctors, we show that our approach is preferred on twice the number of summaries to the baseline pointer generator model and captures most or all of the information in 80% of the conversations making it a realistic alternative to costly manual summarization by medical experts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源