论文标题
多标签分类的紧凑学习
Compact Learning for Multi-Label Classification
论文作者
论文摘要
多标签分类(MLC)研究了每个实例与多个相关标签相关联的问题,这导致输出空间的指数增长。 MLC鼓励一个名为Label Compression(LC)的流行框架以减小尺寸捕获标签依赖性。然而,大多数现有的LC方法未能考虑特征空间的影响或被原始问题特征误导,因此可能导致性能退化。在本文中,我们提出一个紧凑的学习框架(CL)框架,以同时并在相互指导下嵌入特征和标签。该提案是一个多功能的概念,因此嵌入方式是任意的,并且独立于随后的学习过程。遵循其精神,提出了一个简单而有效的实施称为紧凑的多标签学习(CMLL),以学习两个空间的紧凑型低维度。 CMLL最大化标签的嵌入式空间与特征之间的依赖性,并同时使标签空间恢复的丢失最小化。从理论上讲,我们为不同的嵌入方法提供了一般分析。实际上,我们进行了广泛的实验来验证所提出的方法的有效性。
Multi-label classification (MLC) studies the problem where each instance is associated with multiple relevant labels, which leads to the exponential growth of output space. MLC encourages a popular framework named label compression (LC) for capturing label dependency with dimension reduction. Nevertheless, most existing LC methods failed to consider the influence of the feature space or misguided by original problematic features, so that may result in performance degeneration. In this paper, we present a compact learning (CL) framework to embed the features and labels simultaneously and with mutual guidance. The proposal is a versatile concept, hence the embedding way is arbitrary and independent of the subsequent learning process. Following its spirit, a simple yet effective implementation called compact multi-label learning (CMLL) is proposed to learn a compact low-dimensional representation for both spaces. CMLL maximizes the dependence between the embedded spaces of the labels and features, and minimizes the loss of label space recovery concurrently. Theoretically, we provide a general analysis for different embedding methods. Practically, we conduct extensive experiments to validate the effectiveness of the proposed method.