论文标题

由双曲线coxeter组构建高规律的扩张器

Constructing highly regular expanders from hyperbolic Coxeter groups

论文作者

Conder, Marston, Lubotzky, Alexander, Schillewaert, Jeroen, Thilmany, François

论文摘要

图$ x $的定义为$(a_0,\ dots,a_ {n-1})$ - 如果$ x $为$ a_0 $ - regular,则常规,对于每个顶点$ v $ of $ x $,radius $ x $,radius $ 1 $ $ v $ akile $ v $ akile $ v $ a $ v $ a $ v $ a $ v $ a $ a_1,\ dots a_1,\ dots,a_ dots,a_ _ _ _ {n-1} $ - 常规图形 - 常规图形 - 常规图 - - 常规图)。如果$ a_ {n-1} \ neq 0 $,这样的图形$ x $被认为是$ n $的高度常规(HR)。查普曼(Chapman),毛线和沮丧的研究研究了2级的HR图,并提供了几种方法来构建“全球和本地”的图形家族。他们询问是否存在3级的HR图。 在本文中,我们展示了Coxeter组的理论以及抽象的常规多面体及其概括如何导致此类图。给定Coxeter系统$(W,s)$和一个子集$ m $的$ s $,我们构建了相关的Wythoffian Polytope $ \ Mathcal $ \ Mathcal {p} _ {w,m} $的高度规则定期的商具有有限的顶点链接。可以从$(w,s)$的coxeter图中推导出该家族图中图的规律性。该扩展源于将超级应用程序应用于线性组$ W $的一致性子组。 这种机械提供了丰富的人力资源家庭家庭,具有各种有趣的特性,特别是回答了查普曼(Chapman),外线和毛茸茸的问题。

A graph $X$ is defined inductively to be $(a_0,\dots,a_{n-1})$-regular if $X$ is $a_0$-regular and for every vertex $v$ of $X$, the sphere of radius $1$ around $v$ is an $(a_1,\dots,a_{n-1})$-regular graph. Such a graph $X$ is said to be highly regular (HR) of level $n$ if $a_{n-1}\neq 0$. Chapman, Linial and Peled studied HR-graphs of level 2 and provided several methods to construct families of graphs which are expanders "globally and locally". They ask whether such HR-graphs of level 3 exist. In this paper we show how the theory of Coxeter groups, and abstract regular polytopes and their generalisations, can lead to such graphs. Given a Coxeter system $(W,S)$ and a subset $M$ of $S$, we construct highly regular quotients of the 1-skeleton of the associated Wythoffian polytope $\mathcal{P}_{W,M}$, which form an infinite family of expander graphs when $(W,S)$ is indefinite and $\mathcal{P}_{W,M}$ has finite vertex links. The regularity of the graphs in this family can be deduced from the Coxeter diagram of $(W,S)$. The expansion stems from applying superapproximation to the congruence subgroups of the linear group $W$. This machinery gives a rich collection of families of HR-graphs, with various interesting properties, and in particular answers affirmatively the question asked by Chapman, Linial and Peled.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源