论文标题

直径的锤子图3

Radio number of Hamming graphs of diameter 3

论文作者

DeVito, Jason, Niedzialomski, Amanda, Warren, Jennifer

论文摘要

对于$ g $,简单,连接的图,一个顶点标签$ f:v(g)\ rightarrow \ mathbb {z} _ + $称为$ \ textit {ndinder for(v)| f(f(u) - $ u,v \ in V(g)$。 $ g $的$ \ textit {无线电编号} $是$ g $的所有无线电标签的最小跨度。如果存在$ \ {1,2,...,| v(g)| \} $上的bijective无线电标签,$ g $称为$ \ textit {无线电优雅图} $。我们确定所有直径的无线电编号$ 3 $ hamming图,并表明它们的无限子集是广播优美的。

For $G$ a simple, connected graph, a vertex labeling $f:V(G)\rightarrow \mathbb{Z}_+$ is called a $\textit{radio labeling of}$ $G$ if it satisfies $|f(u)-f(v)|\geq \operatorname{diam}(G) + 1 - d(u,v)$ for all distinct vertices $u,v\in V(G)$. The $\textit{radio number}$ of $G$ is the minimal span over all radio labelings of $G$. If a bijective radio labeling onto $\{1,2,...,|V(G)|\}$ exists, $G$ is called a $\textit{radio graceful graph}$. We determine the radio number of all diameter $3$ Hamming graphs and show that an infinite subset of them is radio graceful.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源